North American clinical management guidelines for hidradenitis suppurativa: A publication from the United States and Canadian Hidradenitis Suppurativa Foundations

Part I: Diagnosis, evaluation, and the use of complementary and procedural management

Ali Alikhan, MD (Co-chair), Christopher Sayed, MD (Co-chair), Afsaneh Alavi, MD, MSc, Raed Alhusayen, MD, Alain Brassard, MD, Craig Burkhart, MD, Karen Crowell, MLIS, Daniel B. Eisen, MD, Alice B. Gottlieb, MD, PhD, Iltefat Hamzavi, MD, Paul G. Hazen, MD, Tara Jaleel, MD, Alexa B. Kimball, MD, MPH, Joslyn Kirby, MD, MEd, MS, Michelle A. Lowes, MBBS, PhD, Robert Micheletti, MD, Angela Miller, CCRP, CWCA, Haley B. Naik, MD, MHSc, Dennis Orgill, MD, and Yves Poulin, MD

Sacramento and San Francisco, California; Chapel Hill and Durham, North Carolina; Toronto, Ontario, Canada; New York, New York; Detroit, Michigan; Westlake, Ohio; Boston, Massachusetts; Hershey and Philadelphia, Pennsylvania; and Quebec City, Quebec, Canada

Hidradenitis suppurativa is a chronic inflammatory disorder affecting hair follicles, with profoundly negative impact on patient quality of life. Evidence informing ideal evaluation and management of patients with hidradenitis suppurativa is still sparse in many areas, but it has grown substantially in the last decade. Part I of this evidence-based guideline is presented to support health care practitioners as they select optimal management strategies, including diagnostic testing, comorbidity screening, and both complementary and procedural treatment options. Recommendations and evidence grading based on the evidence available at the time of the review are provided. (J Am Acad Dermatol https://doi.org/10.1016/j.jaad.2019.02.067.)

Key words: acne inversa; adalimumab; biomarkers; carbon dioxide laser; clindamycin; comorbidities; ertapenem; finasteride; guidelines; hidradenitis suppurativa; infliximab; laser; lifestyle modification; microbiome; Nd:YAG; oral contraceptive pills; rifampin; spironolactone.
DISCLAIMER
The purpose of these guidelines is to summarize the available data at the time of preparation. It is possible that certain treatments or procedures are not included, as the primary literature review concluded on March 16, 2017, with only selected updates of high clinical impact through December 1, 2018. Given the difficulty in treating hidradenitis suppurativa (HS), there is no guarantee that following the guidelines will result in successful treatment. Moreover, the guidelines are not meant to set a standard of care. Care of a patient with HS is ultimately guided by the physician and patient, with an emphasis on factors unique to individual patients.

SCOPE
The guidelines address management of patients presenting with HS and discuss various treatments and procedures available at the time of preparation. In Part I of the guidelines the evidence available to guide screening for comorbidities, grading/classification of disease, procedural management, and alternative/complementary treatments are reviewed and graded as outlined in Table I.

METHODS
Details on the methods used are available online (www.hs-foundation.org).

DEFINITION AND DIAGNOSIS
HS/acne inversa is a chronic, inflammatory, recurrent, debilitating skin disease of the hair follicle that usually develops after puberty and presents with painful inflammatory nodules, abscesses, comedones, scarring, and tunneling sinus tracts, with predilection for intertriginous areas of the body (most commonly the axillae and inguinal and anogenital regions). Diagnosis relies on clinical findings of (1) typical HS lesions, (2) predilection for intertriginous sites, and (3) recurrence.

INTRODUCTION
HS has received growing attention in recent years. The prevalence of HS ranges from 0.1% to 2%, with predilection for patients who are in the third and fourth decades of life, of African descent, and of lower socioeconomic status. HS significantly reduces quality of life as a result of physical, emotional, and psychologic consequences. Furthermore, in part because of hospitalization and emergency department costs, HS potentially presents a significant financial burden to society.

Our understanding of HS is changing, and new studies suggest genetic susceptibility (eg, γ-secretase/Notch pathway mutations) and dysregulation in the innate and adaptive (eg, type 1 and type 17 helper T cells) immune pathways. Treatment of HS is similarly evolving, with emphasis on combining both medical and surgical approaches.
when appropriate. The widely variable activity and outcome measures used in the available evidence on HS management make drawing comparisons between treatment options challenging.169

SYSTEMS FOR THE GRADING AND CLASSIFICATION OF HS

Numerous tools for assessment of patients with HS have been described (Table II). Most severity measurements include lesion counts of inflammatory nodules, noninflammatory nodules, sinuses/fistulas (draining or otherwise), scarring, and surface area affected. Pain is a particularly important outcome measure.

In the clinical setting, Hurley staging is recommended, as it is simple and helps determine therapeutic needs. Hurley stage I is characterized by recurrent nodules and abscesses with minimal scar, Hurley stage II is characterized by 1 or a limited number of sinuses and/or scarring within a body region, and Hurley stage III is characterized by multiple or extensive sinuses and/or scarring.170 Inflammatory lesion counts (abscesses and inflammatory nodules) are the underlying basis of several validated measures, are feasible to perform, and may facilitate therapeutic decisions and assessment of clinical response.1 Pain visual analog scale scores and Dermatology Life Quality Index (DLQI) are valuable adjuncts and straightforward to perform in clinical settings.1-6

In research settings, the Hidradenitis Suppurativa Clinical Response is the most validated dynamic physical measure for assessing treatment response,2 but like the Hidradenitis Suppurativa Physician’s Global Assessment and Sartorius score, it may have lower utility in the clinical setting. Patient-reported outcomes to consider include the DLQI score, pain visual analog scale, and HS-specific patient-reported outcomes (Hidradenitis Suppurativa Impact Assessment and Hidradenitis Suppurativa Symptom Assessment).6 A multinational effort developing a core outcome set in HS clinical trials is currently under way.171

ROLE OF SCREENING FOR COMORBIDITIES IN HS

HS comorbidities for which to screen routinely include smoking,155 diabetes,39,40 metabolic syndrome,11 depression/anxiety,134 follicular occlusion tetrad, and squamous cell carcinoma of HS-affected skin.176 Thorough review of systems, smoking history, glycosylated hemoglobin type A1c and/or fasting glucose level in patients with signs and/or symptoms of diabetes, and periodic skin examination (particularly of chronic lesions on the perineum and buttocks, where squamous cell carcinoma is most common) are recommended.

A recent high-quality cross-sectional study of more than 40,000 patients40 and meta-analysis of prior studies39 suggest a 1.5- to 3-fold risk of type 2 diabetes in patients with HS, with a prevalence up to 30%. Patients with physical signs of diabetes, hypertension, obesity, and/or hyperlipidemia are at highest risk and should be screened. Similarly, a large-cross sectional study demonstrated more than a 3-fold risk of polycystic ovarian syndrome, with up to 9% of this group affected.47 Menstrual irregularity and/or physical signs of androgen excess should
Table I. Strength of recommendations for the management and treatment of HS

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength of recommendation</th>
<th>Level of evidence</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading/classification system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurley staging</td>
<td>B</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>HiSCR</td>
<td>A</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>HS-PGA</td>
<td>B</td>
<td>II</td>
<td>2</td>
</tr>
<tr>
<td>Sartorius</td>
<td>B</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>DLQI</td>
<td>A</td>
<td>I</td>
<td>1,3,4</td>
</tr>
<tr>
<td>Pain VAS</td>
<td>A</td>
<td>I</td>
<td>1,2,4,5</td>
</tr>
<tr>
<td>HSIA</td>
<td>B</td>
<td>II</td>
<td>6</td>
</tr>
<tr>
<td>HSSA</td>
<td>B</td>
<td>II</td>
<td>6</td>
</tr>
<tr>
<td>Microbiologic testing</td>
<td>C*</td>
<td>III</td>
<td>7-15</td>
</tr>
<tr>
<td>Biomarker/genetic testing</td>
<td>Not recommended</td>
<td>III</td>
<td>7,16-33</td>
</tr>
<tr>
<td>Comorbidity screening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td>A</td>
<td>I, II</td>
<td>34-38</td>
</tr>
<tr>
<td>Metabolic syndrome</td>
<td>A</td>
<td>I, II</td>
<td>34-38</td>
</tr>
<tr>
<td>Type II diabetes</td>
<td>A</td>
<td>I, II</td>
<td>34,35,38-41</td>
</tr>
<tr>
<td>Follicular occlusion tetrad</td>
<td>A</td>
<td>II</td>
<td>42</td>
</tr>
<tr>
<td>Acne</td>
<td>A</td>
<td>I</td>
<td>43</td>
</tr>
<tr>
<td>Depression/anxiety</td>
<td>A</td>
<td>I, II</td>
<td>34,35,37,38,44</td>
</tr>
<tr>
<td>Squamous cell carcinoma (of HS-affected skin)</td>
<td>C</td>
<td>II</td>
<td>45</td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td>A</td>
<td>II</td>
<td>42,46</td>
</tr>
<tr>
<td>Pyoderma gangrenosum and autoinflammatory syndromes†</td>
<td>B</td>
<td>II</td>
<td>37,42</td>
</tr>
<tr>
<td>Arthropathies†</td>
<td>B</td>
<td>II</td>
<td>42,45</td>
</tr>
<tr>
<td>Polycystic ovarian syndrome†</td>
<td>A</td>
<td>I, II</td>
<td>35,47,48</td>
</tr>
<tr>
<td>Impaired sexual health</td>
<td>A</td>
<td>I, II</td>
<td>49-51</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>A</td>
<td>I, II</td>
<td>52,53</td>
</tr>
<tr>
<td>Laser/light therapies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intense pulsed light</td>
<td>C</td>
<td>III</td>
<td>54-55</td>
</tr>
<tr>
<td>Nd:YAG</td>
<td>B</td>
<td>II</td>
<td>56-58</td>
</tr>
<tr>
<td>Alexandrite</td>
<td>C</td>
<td>III</td>
<td>59</td>
</tr>
<tr>
<td>Diode</td>
<td>C</td>
<td>III</td>
<td>60</td>
</tr>
<tr>
<td>CO₂</td>
<td>C</td>
<td>II, III</td>
<td>61-67</td>
</tr>
<tr>
<td>Fractionated CO₂ (for scars)</td>
<td>C</td>
<td>III</td>
<td>68,69</td>
</tr>
<tr>
<td>Photodynamic therapy</td>
<td>C</td>
<td>II, III</td>
<td>70-77</td>
</tr>
<tr>
<td>External beam radiation therapy</td>
<td>C</td>
<td>III</td>
<td>78,79</td>
</tr>
<tr>
<td>Electrosurgery/radiofrequency</td>
<td>C</td>
<td>III</td>
<td>80,81</td>
</tr>
<tr>
<td>Surgical interventions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide excision</td>
<td>B</td>
<td>II</td>
<td>82-87</td>
</tr>
<tr>
<td>• Wound closure, secondary intention</td>
<td>C</td>
<td>II</td>
<td>87-92</td>
</tr>
<tr>
<td>• Wound closure, delayed primary closure</td>
<td>C</td>
<td>II</td>
<td>93</td>
</tr>
<tr>
<td>• Wound closure, skin graft</td>
<td>C</td>
<td>II</td>
<td>89,92,94-96</td>
</tr>
<tr>
<td>• Wound closure, flaps</td>
<td>C</td>
<td>II</td>
<td>89,94,95,97,98</td>
</tr>
<tr>
<td>• Wound closure, skin substitutes</td>
<td>C</td>
<td>II</td>
<td>99</td>
</tr>
<tr>
<td>Unroofing/deroofing</td>
<td>B</td>
<td>II</td>
<td>84,87,89,100-102</td>
</tr>
<tr>
<td>Laser evaporation</td>
<td>C</td>
<td>II</td>
<td>66,67,103</td>
</tr>
<tr>
<td>CO₂ laser excision</td>
<td>C</td>
<td>II</td>
<td>63,65</td>
</tr>
<tr>
<td>Electrosurgical peeling</td>
<td>C</td>
<td>II</td>
<td>81,104</td>
</tr>
<tr>
<td>Cryosurgery</td>
<td>C</td>
<td>III</td>
<td>105,106</td>
</tr>
<tr>
<td>Abscess drainage</td>
<td>C</td>
<td>II</td>
<td>84,89,100,107,108</td>
</tr>
<tr>
<td>Combined medical and surgical treatment</td>
<td>C</td>
<td>II</td>
<td>109,110</td>
</tr>
<tr>
<td>Alternative interventions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking cessation</td>
<td>C</td>
<td>III</td>
<td>111,112</td>
</tr>
<tr>
<td>Zinc</td>
<td>C</td>
<td>II</td>
<td>113-119</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>C</td>
<td>II</td>
<td>120</td>
</tr>
<tr>
<td>Brewer’s yeast avoidance</td>
<td>C</td>
<td>II</td>
<td>121</td>
</tr>
</tbody>
</table>

Continued
prompt further evaluation for polycystic ovarian syndrome.

Screening for hyperlipidemia and metabolic syndrome are supported by lower-level evidence. Additional large-scale cross-sectional and case-control studies of varying quality demonstrate an association of HS with acne, inflammatory arthropathies, sexual dysfunction, psychiatric conditions, lymphoma, thyroid disease, substance abuse, Down syndrome, pyoderma gangrenosum, inflammatory bowel disease, and autoinflammatory syndromes. Screening for these conditions is recommended when triggered by pertinent examination findings or review of systems (Table III).

LIFESTYLE FACTORS AND ALTERNATIVE TREATMENTS IN HS

Recommendations on lifestyle modifications are based on limited-quality evidence (Table IV). Approximately 70% to 75% of patients with HS smoke and 10% to 15% are past smokers. Some data suggest an association between smoking status and HS severity, duration, and failure of treatment response; however, other studies have not found an association with HS activity or quality of life. In 2 cases, women with HS stopped smoking and had complete remission. Smoking cessation is recommended, as it potentially improves HS as well as other health outcomes.

The prevalence of being overweight or obese may be higher than 75% in patients with HS. Some data link higher body mass index and HS severity; however, another study was contradictory. Case reports and commentaries suggest that substantial weight loss may improve or resolve disease. Surveys of 35 patients with HS who underwent bariatric surgery at a single center found that 35% had a decrease in self-reported symptoms after surgery. With more than a 15% weight reduction, 48.6% of patients reported complete remission, 20% reported improvement, and 20% reported no improvement. Although there are limited data on effects of weight loss, screening for obesity is important for improving health outcomes.

The effects of specific dietary restrictions are unclear. Dairy avoidance was described in surveys of 47 patients, with 83% reporting some improvement and none reporting worsening, but response
Avoidance of brewer’s yeast (*Saccharomyces cerevisiae*) in addition to HS surgery was investigated in 12 subjects. All improved over 12 months and reported recurrence only after consuming brewer’s yeast, but the effects of surgery confound the results.121

Zinc has been recommended for patients with Hurley stage I or II disease as a modulator of innate immunity.185 A retrospective study of 54 patients with Hurley stage I or II disease who were treated with zinc gluconate, 90 mg daily, and topical triclosan 2% for 3 months demonstrated improvement in mean DLQI score (*P* = .039).118 Another prospective study of 22 patients receiving 90 mg daily reported improvement in all patients, with 8 complete responses and 14 partial responses.114 Guillet et al120 found that of 22 vitamin D-deficient patients with HS who received supplements to achieve normal levels, 63% achieved a 20% decrease in inflammatory nodules.120 The evidence is insufficient to support routine use of vitamin D or zinc supplementation.

It has been hypothesized that friction may stimulate epidermal hyperplasia contributing to development of HS lesions, but the evidence is limited to patient surveys and anecdotes.126,127,129,130,185 Of 110 patients surveyed, 16% reported worsening from “tight clothing/friction” whereas 11% reported relief from “loose/cotton clothing/cleanliness/drying/cold.”128 Overall, there is insufficient evidence supporting clothing recommendations.

Two studies investigated shaving and use of chemical depilatories, deodorants, and antiperspirants in HS.131,132 HS was not linked to daily shaving or use of depilatories, deodorants, or antiperspirants in 1 small study.131 In a separate chart review of 11 patients, 6 reported adverse reaction to antiperspirant or deodorant use around the time of HS onset, but the potential for recall bias is high.132 Weak evidence limits recommendations regarding this kind of personal care in HS.

SURGICAL MODALITIES IN HS

Recommendations for the surgical management of acute HS lesions relies on low-quality, uncontrolled, retrospective reports (Table V). In 2010, van der Zee et al described the deroofing technique, in which abscesses and associated sinuses are probed and the skin overlying the sinus or abscess cavity is removed stepwise with the base left untreated. In the uncontrolled study of 73 lesions, 17% recurred, but 90% patient satisfaction was achieved.102 In 2012, Van Hattem et al reviewed a variation using electrosurgery to excise the overlying skin, with a 4% recurrence rate.101 No controlled, prospective studies exist, but deroofing appears to be effective for acute and chronic lesions, with utility in a variety of outpatient settings.7,84,101,102,190-192

Table II. Recommendations for grading and classification

| Clinical performance, Hurley staging, and inflammatory lesion counts (abscesses and inflammatory lesions) are recommended. |
| Consider clinically following pain VAS and DLQI. |
| The recommended grading systems in research studies are the HiSCR, HS-PGA, Sartorius score, DLQI, and pain VAS; the HSIA and HSSA can also be considered. |

DLQI Dermatology Life Quality Index; **HiSCR** Hidradenitis Suppurativa Clinical Response; **HSIA** Hidradenitis Suppurativa Physician’s Global Assessment; **HSSA** Hidradenitis Suppurativa Symptom Assessment; **VAS** visual analog scale.

Table III. Recommendations for screening for comorbidities

| Perform a review of systems and a physical examination to screen for metabolic syndrome, depression, anxiety, diabetes, PCOS, and tobacco abuse. |
| Refer patients with additional risk factors for diabetes such as obesity, hypertension, hyperlipidemia, and acanthosis nigricans for HbA1c and/or fasting glucose testing. |
| Screen for depression, inflammatory bowel disease, autoinflammatory syndromes, and inflammatory arthropathy based on review of systems. |

HbA1c Glycosylated hemoglobin type A1c; **PCOS** polycystic ovarian syndrome.

Table IV. Recommendations for lifestyle modifications and alternative treatments

| Counsel smoking cessation. |
| Screen for obesity and counsel weight loss. |
| May recommend oral zinc supplements (weak evidence). |
| Insufficient evidence exists to recommend avoidance of dairy or brewer’s yeast, vitamin D supplementation, avoidance of friction, deodorant, and depilation/shaving. |

bias likely influenced the results.122 Avoidance of brewer’s yeast (*Saccharomyces cerevisiae*) in addition to HS surgery was investigated in 12 subjects. All improved over 12 months and reported recurrence only after consuming brewer’s yeast, but the effects of surgery confound the results.121

It has been hypothesized that friction may stimulate epidermal hyperplasia contributing to development of HS lesions, but the evidence is limited to patient surveys and anecdotes.126,127,129,130,185 Of 110 patients surveyed, 16% reported worsening from “tight clothing/friction” whereas 11% reported relief from “loose/cotton clothing/cleanliness/drying/cold.”128 Overall, there is insufficient evidence supporting clothing recommendations.

Two studies investigated shaving and use of chemical depilatories, deodorants, and antiperspirants in HS.131,132 HS was not linked to daily shaving or use of depilatories, deodorants, or antiperspirants in 1 small study.131 In a separate chart review of 11 patients, 6 reported adverse reaction to antiperspirant or deodorant use around the time of HS onset, but the potential for recall bias is high.132 Weak evidence limits recommendations regarding this kind of personal care in HS.
methods is preferred to simple drainage. For large nonrecurrent abscesses, incision and drainage procedures can provide acute relief and allow for a smaller definitive procedure to be performed at a future date once the inflammation and size of the affected tissue have been reduced. Electrosurgical destruction using a loop electrode to remove lesions to the subcutaneous layer and cryosurgery for acute/subacute lesions have been characterized in few studies, with inadequate evidence to recommend use.81,106

Moderate-quality evidence for surgical management of chronic lesions has consisted of uncontrolled, retrospective reports. In a series of 590 patients treated with excision, deroofing, or drainage, drainage was associated with the highest recurrence, whereas deroofing and wide excision were about equal in effectiveness. There was a 24.4% overall recurrence rate, with younger age and operation at multiple sites associated with increased risk.84,192 Another series of 31 patients treated with drainage, limited surgery, or radical excision reported 100%, 42.8%, and 27% recurrence rates, respectively, with a mean follow-up of 72 months.193 Carbon dioxide (CO2) laser excision and marsupialization (laser vaporization of the wound base and edges to create a pocket-like defect with smooth, rounded edges) with secondary intention healing, in particular, seem to be associated with low recurrence rates, though they can have prolonged healing times.65,66

Wide local excision has been the mainstay of traditional surgery and can result in a disease-free state where the excision was performed. Excision can typically be limited to a superficial subcutaneous plane, with deeper excision based on visible disease extension. Because surgery alone does not alter disease biology, understanding the trade-offs between extent of excision, surgical morbidity, and reducing the risk of future lesions is an important surgical judgment.

In addition to surgical technique, cure rates may depend on the location treated with perianal, vulvar, and inferior breast having higher recurrence rates.84,87,89,107,193 Reconstruction methods such as primary closure, grafts, and flaps can speed healing but may be associated with higher recurrence rates than secondary intention healing. Variation in surgical technique within and among studies makes recommendations regarding reconstruction methods uncertain.*

Excision with delayed closure following days to weeks of secondary intention healing has been frequently reported.86,93,95,141,195-199 This requires prolonged recoveries and can be complicated by infection, joint contractures, and scarring. Immediate reconstruction may allow faster healing, though recovery can still be prolonged. Grafts are generally split-thickness with a technique similar to that for treating large burns.200 Additional reports describe using “recycled skin” grafts145,201 or dermal scaffolds before grafting,97,99 though contour irregularities in reconstructed and donor sites are typical. Regional or free flaps provide thicker coverage with a more natural, less scar-like appearance, but they can be bulky and require thinning as a secondary procedure.81,96,98,107,110 Discussing the drawbacks and benefits of various forms of reconstruction with patients can help determine individualized approaches.

Surgical intervention is typically reserved for disease that is uncontrolled by pharmacologic care. When procedures are indicated, medical therapy may be initiated or continued without interruption.
Table VII. Recommendations for wound care

Local wound care for surgical and nonsurgical wounds in HS follows the principles of best-practice individualized wound care.

Choice of dressing is based on the amount of drainage, location, periwound skin condition, cost, and patient preference.

Use of antiseptic washes is generally supported by expert opinion, though it carries low risk of contact dermatitis.

Use of negative-pressure therapy for selected large open wounds for a short period (1-4 weeks) followed by delayed reconstruction may be beneficial.

HS, Hidradenitis suppurativa.

as risk for surgical complications is likely higher from poorly controlled disease than from medications.

PAIN MANAGEMENT IN HS

Pain is a significant independent contributor to quality of life in HS, and reducing inflammation improves pain.150 There are no specific HS pain studies in the literature; treatment is based on pain guidelines, expert opinion, and patient preferences (Table VI).149 Nociceptive, stimulant-dependent, and neuropathic pain all contribute, and psychologic comorbidities should be considered during management.203

For management of acute pain, topical analgesics such as lidocaine, oral acetaminophen, and oral nonsteroidal anti-inflammatory drugs are preferred.203

A multidisciplinary approach to chronic pain management, at times in collaboration with pain specialists, is most effective. Because of the opioid crisis, use of opioids must be considered judiciously, but they are sometimes necessary.204 Tramadol should be considered as an alternative to conventional opioids in patients with cardiopulmonary compromise,205 and it permits a nonsteroidal anti-inflammatory drug—sparing effect. Codeine, hydrocodone, morphine, and other opioids can manage pain that does not respond to first-line agents.204 Anticonvulsants, including pregabalin and gabapentin, can improve neuropathic pain but should be used with caution.149

WOUND CARE IN HS

Recommendations for postsurgical and nonsurgical HS wound care are based on limited evidence (Table VII).206,207

Table VIII. Recommendations for light, laser, and energy sources

An Nd:YAG laser is recommended in patients with Hurley stage II or III disease on the basis RCT and case series data and in patients with Hurley stage I disease on the basis of expert consensus.

Other wavelengths that are used for follicular destruction are recommended on the basis of lower-quality evidence.

CO2 laser excision is recommended in patients with Hurley stage II or III disease with fibrotic sinus tracts.

External beam radiation and PDT have a limited role in the management of patients with HS.

HS, Hidradenitis suppurativa; Nd:YAG, neodymium-doped yttrium-aluminum-garnet; CO2, carbon dioxide; RCT, randomized controlled trial; PDT, photodynamic therapy.

Although there are studies on the use of absorptive dressings in HS, no data favor a specific type. Atraumatic and absorptive dressings are important, but they can be costly.206 Most data focus on postsurgical wounds with use of simple foam dressings, whereas advanced dressings are used for more complex wounds.

A prospective randomized study of 200 patients found lower complication rates in 124 treated with primary closure over a gentamycin-collagen sponge than in 76 treated with primary closure alone in the first month, though at 3 months the rates of recurrence and complications were similar.133 Manuka honey with silver alginate dressings, hydrofiber dressings (Aquacel, ConvaTec, Deeside, United Kingdom), and silastic foam dressings have all been used in small series of postsurgical wounds with good patient satisfaction, but comparator groups have been lacking.134,135 An approach using platelet-rich plasma on a surgical wound bed and injected at the edges with Hyalomatrix PA dressing (Anika Therapeutics, Bedford, MA) has been reported in a single case with adequate healing.163

Negative-pressure wound therapy has been shown to shorten the duration between excision and delayed closure or grafting, but comparisons of various approaches using negative-pressure wound therapy alone versus with silver dressings or dermal regeneration templates (Integra, Integra LifeSciences, Plainsboro, NJ) are limited.146,157,148

LIGHT, LASER AND ENERGY SOURCES IN HS

A number of energy sources have been evaluated in HS (Table VIII). The neodymium-doped
yttrium-aluminum-garnet laser has the largest number of controlled trials and case reports showing consistently effective results, though mostly at 1 center.56-58 Patients had mostly Hurley stage II or III disease. The entire affected body region is treated with the active nodules double-pulsed in a stacked fashion. In the randomized controlled trial, typical settings generally used a 10-mm spot size with a 10-ms pulse duration and 35 to 50 J/cm² in patients with Fitzpatrick skin type I to III and a 20-ms pulse duration and 25 to 40 J/cm² in patients with skin types IV to VI.56 In general, settings may vary by specific device and selected spot size and their use should be guided by operator experience with an end point of delayed post-treatment perifollicular erythema and/or edema for follicular destruction.209 In most studies, 3 or 4 treatment sessions were performed, though additional treatment to further reduce follicular units may provide more lasting benefit.

CO2 lasers were the first to be used for HS, and they are used for excision, marsupialization, and vaporization of affected skin. A large number of uncontrolled retrospective series in patients with Hurley stage II or III disease show consistently positive outcomes.51-67

Photodynamic therapy has been evaluated in several series. Variations in outcome measures, light sources, photosensitizers, and topical versus intralesional treatment make interpreting study results difficult. The results with topical sensitizers are equivocal, and intralesional photodynamic therapy offers promise based on only small, uncontrolled studies.70-71,210

Use of long-pulsed alexandrite and diode lasers and intense pulsed light is supported by case reports, likely owing to follicular destruction and anti-inflammatory effects similar to those with the use of a neodymium-doped yttrium-aluminum-garnet laser.54,55,59,60,211 Electrosurgery and radiofrequency are ablative and supported only by case reports.80,81 Use of a fractionated CO2 laser has been reported in cases to help with postsurgical scar contraction and delayed wound healing.69,75

External beam radiation has been examined in many case reports. However, disease severity has not been stratified, results are equivocal, and no randomized controlled trials have been published.78,79 Appropriate use is limited to severe cases that were recalcitrant to most other treatment modalities and not suitable for excision.

CONCLUSION

HS management is often complex and requires balancing medical and surgical treatment options in addition to addressing associated pain, psychiatric, and medical comorbidities. These guidelines aim to help clinicians make optimal treatment decisions, but standard of care management requires an individualized approach because rigorous evidence is unavailable for most interventions. The need for stronger evidence highlighted by the guidelines should direct future research to fill gaps in current evidence.

The committee would like to thank the external reviewers who provided valuable feedback, including Dr Wayne Gulliver, Dr Errol Prens, and Dr Hessel van der Zee.

REFERENCES

160. Vaidya T, Vangipuram R, Alikhan A. Examining the race-specific prevalence of hidradenitis suppurativa at a large academic center; results from a retrospective chart review. Dermat Online J. 2017;23(6).

